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Abstract
Riemannian metric on real 2n-dimensional space associated with the equation
governing complex diffusion of pure states of an open quantum system is
introduced and studied. Examples of a qubit under the influence of dephasing
and thermal environments are used to show that the curvature of the diffusion
metric is a good indicator of the properties of the environment-dominated
evolution and its stability.

PACS number: 03.65.Yz

1. Introduction

The states of an open quantum system are commonly described by a density matrix ρ̂. In
many cases, the evolution of ρ̂(t) is governed by a master equation of the Linblad form [1, 2]
for the density matrix ρ̂(t),

dρ̂(t)

dt
= −i[Ĥ , ρ̂] +

1

2

∑
l

[
L̂l ρ̂, L̂

†
l

]
+

[
L̂l, ρ̂L̂

†
l

]
, (1)

where the Linblad operators L̂l describe the influence of the environment. The equation (1)
represents the general form of an evolution equation for a quantum system which satisfies
Markov property.

However, this theoretical approach to the dynamics of open quantum systems is not
unique. In real experiments it is often useful to understand and model the dynamics of pure
quantum states [3–5]. Indeed, the evolution of an open system can be described directly in
terms of the dynamics of the system’s pure state. The corresponding evolution equation is
a stochastic modification of the unitary Schroedinger equation. In fact, the density matrix
ρ̂ can be written, in different but equivalent ways, as a convex combination of pure states.
Each of these results in a stochastic differential equation for |ψ(t)〉 in the Hilbert space H.
Such stochastic Schroedinger equations (SSE) are called stochastic unravelling [2, 6, 7] of the
Linblad master equation for the reduced density matrix ρ̂(t). There are many different forms
of nonlinear and linear SSE that have been used in the context of open systems [2, 3, 6–8] or
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suggested as fundamental modifications of the Schroedinger equation [6, 9–13]. They are all
consistent with the requirement that the solutions of (1) and of SSE satisfy

ρ̂(t) = E[|ψ(t)〉〈ψ(t)|], (2)

where E[|ψ(t)〉〈ψ(t)|] is the expectation with respect to the distribution of the stochastic
process |ψ(t)〉. The advantages of the description in terms of the pure states and SSE over the
description by ρ̂ are twofold. On the practical side, the computations are much more practical,
as soon as the size of the Hilbert space is moderate or large [14]. On the theoretical side, the
stochastic evolution of pure states provides valuable insights which cannot be inferred from
the density matrix approach [2, 5, 6, 15–17].

There are two main approaches to the unravelling of the Linblad master equation: the
method of quantum state diffusion [6] and the relative state method [2, 3], with specific
advantages associated with each of the methods. The relative state method is usually used do
describe the situations when the measurement is the dominant interaction with the environment.
The method offers particular flexibility in that the master equation can be unravelled into
different stochastic equations conditioned on the results of measurement. On the other hand,
the correspondence between the QSD equations and the Linblad master equations is unique,
and is not related to a particular measurement scheme or the form of the Markov environment.
The resulting SSE is always of the form of a diffusion process on the Hilbert space of pure
states, which is its main property to be explored in this paper.

We shall concentrate on the unique unravelling of the master equation given by the
quantum state diffusion equation and explore the fact that it represents a diffusion process.
QSD equation is the unique unravelling of (1) which preserves the norm of the state vector and
has the same invariance as (1) under the unitary transformations of the environment operators
{L̂l} [6]. The equation is given by the following formula:

|dψ〉 = −iĤ |ψ〉 dt +

[∑
l

2
〈
L̂

†
l

〉
L̂l − L̂

†
l L̂l − 〈

L̂
†
l

〉〈L̂l〉
]

|ψ(t)〉 dt +
∑

l

(L̂l − 〈Ll〉)|ψ(t)〉 dWl

(3)

where 〈 〉 denotes the quantum expectation in the state |ψ(t)〉 and dWl are independent
increments (indexed by l) of complex Wiener c-number processes Wl(t).

Equation (3) represent a diffusion process on a complex vector space. We shall utilize
the diffusion matrix of this process to define a Riemannian metric on the corresponding real
space. We shall then study the properties of this diffusion metric as a field fixed by the
environment and in relation to the stochastic evolution of the state vector, for different types of
the environment. It will be shown, using examples of the dephasing and thermal environments
and the measurement of an observable, that the curvature of the diffusion metric is a good
indicator of the properties of the environment-dominated evolution and its stability. We shall
see that the curvature maxima of the diffusion metric coincide with the states that are preferred
by the particular type of the environment. Furthermore, if the maxima are sharp and positive,
the stochastic dynamics governed by the environment and a Hamiltonian perturbation that
does not commute with L̂l is likely to be attracted to the state with the maximal (positive)
curvature. On the other hand, the states that correspond to the negative values of the curvature
are unstable. Our analyses of the QSD equation, and the results, are strictly related to the
fact that the equation represents a norm-preserving diffusion process, and in this sense are
applicable to the stochastic modifications of the Schroedinger equation that describe a norm-
preserving diffusion on the Hilbert space of pure states, such as the QSD equation and, for
example, the equations of the spontaneous collapse models [13].
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The structure of the paper is as follows. We shall first discuss, in the next section, a way
to relate a Riemannian metric on a real space R2n to a complex diffusion process on Cn. Then,
in section 3, we shall apply this procedure to define the Riemannian metric associated with
QSD and then the properties of this metric for various types of environments will be studied.
Finally, in section 4, we shall summarize and discuss our results.

2. Riemannian metric of a complex diffusion

Using the following notation

f (|ψ〉) = −iĤ |ψ〉 +

[∑
l

2〈ψ |L̂†
l |ψ〉L̂l − L̂

†
l L̂l − 〈ψ |L̂†

l |ψ〉〈ψ |L̂l|ψ〉
]

|ψ〉, (4)

B(|ψ〉) dW =
∑

l

(L̂l − 〈ψ |Ll|ψ〉)|ψ〉 dWl, (5)

the QSD equation (3) assumes the standard form of a stochastic differential equation (SDE)
for an n-dimensional autonomous (stationary) complex diffusion process:

d|ψ〉 = f (|ψ〉) dt + B(|ψ〉) dW. (6)

where |ψ(t)〉 and f (|ψ(t)〉) are complex vectors of complex dimension n, and dW are
differential increments of an m-dimensional complex Wiener process:

E[dWl] = E[dWl dWl′ ] = 0,

E[dWl dW̄ l′] = δl,l′ dt, (7)

l = 1, 2, . . . , m,

where E[·] denotes the expectation with respect to the probability distribution given by the
(m-dimensional) process W and W̄l is the complex conjugate of Wl . B(|ψ〉) is n × m matrix,
where m is at most n2 − 1, and the diffusion matrix is

G = BB†. (8)

Thus, G(|ψ〉) is Hermitian and nonnegative definite. Note that, unlike the case of a general
SDE, the dissipative part of the drift (4) and the diffusion term (5) are determined by the same
operators L̂l , and related in such a way that the diffusion equation preserves the norm of the
state vector.

The complex n-dimensional equation (3) generates 2n-dimensional real diffusion. Let us
introduce the following real n dimensional vectors:

p = i√
2
(ψ̄ − ψ), q = 1√

2
(ψ̄ + ψ)

(9)
ψ = 1√

2
(q + ip), ψ̄ = 1√

2
(q − ip),

and a 2n dimensional vector X = (q, p). Similarly, we introduce real and imaginary parts of
the vector f and order them as components of a 2n real vector F = (f R, f I ), and introduce
real and imaginary parts of the increments of the complex m-dim Wiener process dW by

dWi = (
dWR

i + i dWI
i

)/√
2, i = 1, 2, . . . , m (10)

It is easily checked that the real and the imaginary parts are increments of a real 2m-
dimensional process, i.e.,

E
(
dWR

i dWR
j

) = E
(
dWI

i dWI
j

) = δi,j dt, E
(
dWR

i dWI
j

) = 0. (11)
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With this notation we have(
dq

dp

)
= 1√

2

(
dψ̄ + dψ

dψ̄ − dψ

)
. (12)

Substitution of the complex equation (3) and its complex conjugate leads to the following 2n

dimensional real SDE:(
dq

dp

)
=

(
f R(p, g)

f I (p, q)

)
+

1√
2

(
BR −BI

BI BR

) (
dWR

dWI

)
, (13)

The matrix B of dimension 2n × 2m

B = 1√
2

(
BR −BI

BI BR

)
, (14)

where

(B)ij = (BR)ij + i(BI )ij , (15)

gives the diffusion matrix G for the real 2n-dimensional diffusion described by the process
(13)

G = BBT = 1

2

(
(BR)(BR)T + (BI )(BI )T (BR)(BI )T − (BI )(BR)T

(BI )(BR)T − (BR)(BI )T (BI )(BI )T + (BR)(BR)T

)
. (16)

We can write the matrix G in terms of real and imaginary components of the n×n complex
matrix G = BB† as follows:

G = 1

2

(
GR GI

−GI GR

)
= 1

2

[(
GR 0
0 GR

)
+

(
0 −1
1 0

) (
GI 0
0 GI

)]
(17)

where −GI = (GI )T , since the matrix G is Hermitian. Furthermore, one can see that, besides
the equalities between the entries corresponding to the symmetry of the matrix, there are other
equalities

(G)i,j = (G)i+n,j+n, i, j = 1, 2, . . . , n. (18)

The matrix G is symmetric and nonnegative, but it could be singular. However, the matrix
Diag{1/2, 1/2, . . . , 1/2} + G gives a Riemannian metric on the real 2n-dimensional vector
space. The factor 1/2 of the Euclidian part is chosen in order that the Euclidian norm of a
vector corresponding to a complex n-vector of unit norm is also unity.

Once the diffusion metric Diag{1/2, 1/2, . . . , 1/2}+G is calculated the standard formulae
[18] give the connection coefficients �k

µν of the Levi-Civita connection for this metric in terms
of the coefficients gµν = δµν/2 + (G)µν only:

�k
µν = 1

2gkλ(∂µgλν + ∂νgλµ − ∂λgµν). (19)

Curvature tensor, Ricci tensor and the scalar curvature of the diffusion metric are also given
by the standard formulae [18]:

Rk
λµν = ∂µ�k

νλ − ∂ν�
k
µλ + �

η

νλ�
k
µη − �

η

µλ�
k
νη, (20)

Ricµν = Rλ
µλν, R = gµνRicµν. (21)

Before we present the results of calculations of the diffusion metric and its curvature
for different types of environments, we would like to briefly consider real representation of
the QSD equation in the case when the Linblad operators are Hermitian. This includes, for
example, the dephasing environment or measurement or the primary QSD [6, 19] and other
fundamental stochastic modifications of the Schroedinger equation [9, 10, 12]. The goal of
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this digression is to point out to the connection between the general QSD equation (3) and
some other stochastic modifications of the Schroedinger equation that have the form of a
norm-preserving diffusion equation, and that consequently the construction of the diffusion
metrics and its properties are also applicable to these equations. In the case of Hermitian
Linblad operators, the real representation of (3) assumes a specially simple and illuminating
form. Applying the same derivation as from equation (9) to equation (13) one obtains the
following:

dpi = −Hijqj dt + (2〈L〉Lij − (L2)ij − 〈L2〉δij )pj dt

+ 1√
2
(Lij − 〈L〉δij )pj dWR + 1√

2
(Lij − 〈L〉δij )qj dWI, (22)

where we have, for reasons of simplicity, included only one Linblad operator and the
summation over repeated indexes is assumed. Noticing that for an arbitrary linear operator B

Bijqj = δij

∂〈B〉
∂qi

, Bijpi = δij

∂〈B〉
∂pi

, (23)

equation (23) becomes

dpi = −∂〈H 〉
∂qi

dt +
∂	2L

∂pi

dt +
1√
2

[
∂〈L〉
∂qi

dWR +
∂〈L〉
∂pi

dWI

]
, (24)

where 	2L = 〈L2〉− 〈L〉2. There is an analogous equation for dqi . The two sets of equations
represent a diffusion process on R2n, consisting of the drift given by a Hamiltonian dynamical
system on R2n with the Hamilton’s function 〈H 〉 and the dissipative part determined by
	2L = 〈L2〉 − 〈L〉2 and the diffusion term determined by 〈L〉. The drift and the diffusion are
such that the norm of the vectors in R2n is preserved. Furthermore, the equations are invariant
under a global gauge transformation corresponding to the multiplication of vectors |ψ〉 by a
phase factor. Taking into the account the norm invariance and the global phase symmetry, the
equations can be written as a diffusion equation on the phase space S2n−1/S1 of the following
form:

dX = 
∇〈H 〉 dt + ∇(	2L) dt + 1√
2
∇〈L〉 dW (25)

where ∇ and 
∇ are the gradient and the skew gradient on S2n−1/S1, and X denotes the set
of 2n − 2 coordinates on the reduced phase space S2n−1/S1. Equations like (25) have been
analysed as candidates for a description of the spontaneous state reduction in [13] or in the
case L̂ = Ĥ in [12].

3. QSD metric and qualitative properties of dynamics

Application of formula (16) gives for the case (5) of the QSD equation an explicit procedure
for the calculation of the diffusion metric coefficients gij , in terms of the coefficients of the
Linblad operators and the coefficients of the state |ψ〉 in some bases |ψ〉 = ∑

i ci |i〉. The
components of the diffusion matrix G = BB† are given by

Bkk′(c, c̄) =
m∑
l

n∑
j,j ′

(Ll − 〈Ll〉1)kj (L
l† − 〈Ll†〉1)k′j ′cj c̄

′
j (26)

where 〈Ll〉 = ∑
ss ′ Lss ′c′

s c̄s . Expressing ci, c̄i in terms of x1, . . . , x2n

xi = (c̄i + ci)/
√

2 i = 1, . . . , n
(27)

xi = √−1(c̄i − ci)/
√

2 i = n + 1, . . . , 2n,
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separating of GR and GI and substituting into (16) finally gives the 4n2 entries of the real
matrix G.

We shall study the diffusion metric for the following three types of environments: (a)
dephasing environment, (b) the environment corresponding to measurement of an observable
and (c) thermal environment. The first two are represented by Hermitian and the third one by
a non-Hermitian Linblad operators. The main geometrical object which we shall study are the
diffusion metric norm of a state vector and its scalar curvature. In order to illustrate how these
objects depend on the environment we shall use the simplest but important quantum system,
namely a single qubit. The system operators can be expressed as combinations of the Pauli
sigma matrices σ̂x, σ̂y, σ̂z, a state |ψ〉 of unit norm is determined by 〈σ̂x〉, 〈σ̂y〉, 〈σ̂z〉 or by the
spherical angles (θ, φ) given by

〈σ̂z〉 = cos(θ)

〈σ̂x〉 = sin(θ) cos(φ) (28)

〈σ̂y〉 = sin(θ) sin(φ).

The environment operators are [3, 20]

L̂ = µσ̂+σ̂− (29)

for the dephasing and

L̂ = µ1σ̂+ + µ2σ̂− (30)

for the thermal environment, with µ1 and µ2 proportional to the temperature, and finally for
the measurement of, say, σ̂z, the Linblad operator is just

L̂ = µσ̂z. (31)

The formulae for the entries gij of the diffusion metrics in terms of the coordinates
x1, x2, x3, x4 in the three considered cases can be conveniently written using the following
notation:

d2
1 = x2

1 + x2
3 , d2

2 = x2
2 + x2

4
(32)

s = x1x2 + x3x4, a = x1x4 − x2x3.

Because many of the metric entries are repeated, it is more convenient to present them in a
list rather than to write the corresponding matrices. Using the notation (32), the entries of the
metrics in the three considered cases are, for dephasing,

g11 = 1/2 + (µ2/16)d2
1

(
2 + d2

1

)2
, g12 = (µ2/16)sd2

1

(
2 + d2

1

)
, g13 = 0

g14 = (µ2/16)ad2
1

(
2 + d2

1

)
, g22 = 1/2 + (µ2/16)d4

1d2
2 , g23 = −g14 (33)

g24 = 0, g33 = g11, g34 = g21, g44 = g22.

For the thermal environment

g11 = 1/2 + d2
2

[
d2

1µ2
1 +

(
2 + d2

1

)2
µ2

2

]/
16,

g12 = s
[
d2

1

(
2 + d2

2

)
µ1 +

(
2 + d2

1

)
d2

2µ2
]/

16, g1,3 = 0

g14 = a
[
d2

1

(
2 + d2

2

)
µ1 +

(
2 + d2

1

)
d2

2µ2
]/

16,

g22 = 1/2 + d2
1

[
d2

2µ2
2 +

(
2 + d2

2

)2
µ2

1

]/
16

g13 = 0, g23 = −g14, g24 = 0, g33 = g11, g34 = g21, g44 = g22;
(34)
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and for the measurement of σ̂z

g11 = 1/2 + (g2/16)d12(2 + d2
1 − d2

2

)2
,

g12 = (
g2/16

)
s
(
d2

2 − d2
1 − 2

)(
d2

1 − d2
2 + 2

)
, g13 = 0 (35)

g14 = a
(
d2

1 + d2
2 + d2

1d2
2

)
, g22 = 1/2 + (g2/16)d2

2

(
2 + d2

2 − d2
1

)2
,

g23 = −g14, g24 = 0, g33 = g11, g34 = g21, g44 = g22.

These formulae are used to compute the diffusion metric norm and the scalar curvature as
functions of the state parameters θ and φ. We shall first consider the dependence of the stated
properties of the diffusion metric on the type of the environment and the coupling strengths
µ,µ1, µ2 and then analyse the relation between these properties and the stochastic dynamics
of the state vectors.

In figures 1 and 2, we illustrate the diffusion metric norm and curvature considered
as functions on the sphere of states fixed by the type of environment and the value of the
corresponding coupling µ,µ1, µ2. Consider first figure 1. The first row (figures (a), (c)
and (e)) represents the diffusion metric norm and the second row (figures (b), (d) and (f))
the curvature for the three types of the environments and for some typical fixed values of
the corresponding coupling strengths. The curvature is not constant and can be positive or
negative depending on the state vector and on the coupling strength. The maxima of the
curvature can be sharp like in the cases of the dephasing and measurement of σz. On the other
hand, in the thermal case the maxima is surrounded by a large neighbourhood of states with
almost maximal value of the curvature. Thus, the curvature has a sharp maxima only at the
states which are clearly favoured by the environment. If there are no such states the curvature
maximum differs very little from the neighbouring values. The curvature minima are at the
states that are like repellers for the environment-dominated dynamics.

Dependence of the curvature maxima and the norm on the coupling strength is illustrated
in figure 2 for the dephasing and the thermal environments. The most important information
from these figures is that in the dephasing and measurement (not shown) cases there are
clearly sharp values of corresponding coupling strength where the curvature maxima goes
from negative to positive values. Also, we see that the curvature minima are negative for all
values of the coupling strength.

We shall now study the relation between the sign of the curvature maxima and a
stability of the stochastic dynamics of the state vector. The relation will not be analysed
in a mathematically rigorous way using an appropriate notion of the stochastic stability and
considering the evolution of the metric as a stochastic process governed by the process |ψ(t)〉.
Instead, our strategy is to compute the curvature along different sample paths and see if the path
remains near the state corresponding to the curvature maxima. We do such computations for the
evolution governed by the environment and an additional fixed small Hamiltonian, and we pay
special attention to the case when the Linblad operators and the Hamiltonian do not commute.
The computations are repeated for the values of the coupling to the environment slightly
above and below the critical value when the curvature maxima are zero. If the Hamiltonian
perturbation is zero the sample paths that started near a maximum of the curvature remain near
this maximum. For very small added Hamiltonian part and for a fixed value of the coupling
to the environment, the sample paths of the system could wonder away from the maximum or
could remain near it. In the former case we shall say that the stochastic dynamics is unstable
and in the later case it is stable. The relevant computations are illustrated in figures 3 and 4.

In the case of the dephasing environment (or the measurement of σ̂z), when the maxima
of the curvature are sharply picked, figure 3 clearly illustrate that positive curvature maxima
correspond to the stability and negative to instability in the above mentioned sense. On the
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Figure 1. Diffusion metric norm ((a), (c), (e)) and curvature ((b), (d), (f )) as functions of state
parametrized by (θ, φ), for dephasing environment with µ = 0.6 ((a), (b)); measurement of σ̂z

with µ = 1 ((c), (d)) and thermal environment with µ1 = 2, µ2 = 1 ((e), (f )).

other hand, in the thermal case, the dynamics is always unstable even if there is no Hamiltonian
perturbation. This is illustrated in figure 4. We can conclude that the diffusion metric curvature



Geometry and dynamics of quantum state diffusion 5945

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-30

-20

-10

0

θ

R

(d )

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.2

1.5

1.8

2.1

2.4

θ

D (c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

µ

maxR (f )

0.0 0.2 0.4 0.6 0.8 1.0
-2

0

2

4

6

µ

maxR (e)

-4

-2

0

2

θ

R

0 0.5 1 1.5 2 2.5 3

(b)

1.0

1.1

1.2

1.3

1.4

1.5

θ

D

0 0.5 1.0 1.5 2.0 2.5 3.0

(a)

Figure 2. Diffusion metric norm ((a), (c)) and curvature ((b), (d)) as functions of θ for different
values of the parameters µ or µ1, µ2, and the maximum over (θ, φ) of the curvature as a function
of µ (e) or µ1 = 2µ2 = 2µ(f ). (a), (b), (e) corespond to the dephasing and (c), (d), (f ) to the
thermal environment.

provides us with a clear picture of the qualitative properties of the system’s dynamics under
strong influence of the environment.

It is well known that if the Linblad operators are Hermitian and commute with the
Hamiltonian, then the attractors of the stochastic QSD dynamics are the common eigenstates
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-1.0
-0.5

0.0
0.5

1.0 -1.0

-0.5
0.0

0.5
1.0-0.9

-0.6

-0.3

0.0

0.3

0.6

0.9

σ yσ
x

(b)

σ
z

0 400 800 1200
-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

t

R
(a)

0 400 800 1200
-1.0

-0.8

-0.6

-0.4

-0. 2

0.0

0.2

0.4

0.6

0.8

1.0

t

R
(c)

-1.0
-0.5

0.0
0.5

1.0 -1.0

-0.5
0.0

0.5
1.0-0.9

-0.6

-0.3

0.0

0.3

0.6

0.9

σ yσ
x

(d )
σ

z

Figure 3. Diffusion metric curvature ((a), (c)) along the corresponding stochastic path illustrated
in (b) and (d) for the dephasing environment and µ = 0.3 when maxR < 0 ((a), (b)), and µ = 0.5
when maxR > 0 ((c), (d)). The small Hamiltonian perturbation is 0.01σ̂x .

of the Hamiltonian and the Linblad operators [6, 13]. The curvature maxima coincide with the
eigenstates of the Linblad operators and consequently with the eigenstates of the Hamiltonian.
The probability of convergence to one of the attractors is, in this case, determined solely
by the distance of the initial state from the attractor eigenstate, that is by the quantum
mechanical transition probability, and does not depend on the parameters of the Hamiltonian
and stochastic terms. The sign of the curvature maxima has no effect on this probability. This
is the reason why we expected that the relevance of the sign of the curvature maxima on the
stochastic stability is manifested if the Linblad operator and the Hamiltonian perturbation do
not commute. This expectation is qualitatively confirmed, as we described and illustrated
in figures 3 and 4, by numerical computations. Observations of numerical sample paths,
when the Linblad and the Hamiltonian operators do not commute, are enough to establish the
qualitative connection between the maxima of the curvature and the stability of small domains
near the maxima.
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Figure 4. Diffusion metric curvature (a) along a stochastic path (b) for the thermal environment
and µ1 = 2µ2 = 1.6. The Hamiltonian part is zero.

Finally, our treatment of the relation between the geometry of the diffusion and the
stability of the stochastic dynamics is rather heuristic. We treated the diffusion metric as a
given field on R2n (determined by the Linblad operators), and we numerically studied the paths
of the stochastic process |ψ(t)〉 in relation to the sign of the curvature maxima. However, the
problem of stability versus the properties of the diffusion metric should be formulated and
studied using the appropriate notions of stochastic stability [21, 22]. Nevertheless, we think
that the numerical evidence strongly indicates that there is a clear relation between the sign
and the shape of the curvature maxima and the systems dynamical stability.

4. Summary and discussion

According to the view of QSD theory, the evolution of a state of an open quantum system
is a diffusion process governed by a complex stochastic differential equation on the Hilbert
space of the system. The diffusion term of the QSD evolution equation explicitly depends on
the operators modelling the environment and on the current state vector of the system. We
have studied the Riemannian metric associated with the diffusion term in the QSD equation.
The metric is defined on the real 2n-dimensional space (here n is the complex dimension
of the Hilbert space) and is directly related to the properties of the Linblad operators of the
environment. We have shown that the scalar curvature of the metric has local maxima at states
that are favoured by the corresponding environment. The curvature at different points, and
in particular its local maxima, can be negative or positive depending on the strength of the
coupling to the environment. Also, the sharpness of the curvature maxima reflects the type
of the environment. We have shown that there is a sense in which the sign of the curvature
maxima is related to the stability of the corresponding state under the addition of a small
perturbation that does not commute with the considered Linblad operator. If the environment
type and the coupling strength are such that the curvature has sharp positive maxima, then the
corresponding state is likely to attract the states of the system whose evolution is governed
by the environment and a Hamiltonian that does not necessarily commute. On the other
hand, if the curvature maxima are negative, the corresponding states are dynamically unstable
under a small Hamiltonian perturbation that does not commute with the Linblad operators. In
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conclusion, the curvature of the diffusion metric is a relatively easy to calculate, and a very
good indicator of what the environment-dominated dynamics of the system would look like.

The QSD equation describes the evolution of a pure quantum state using the Hilbert
space of the quantum system, but, because it is norm-preserving, it also gives an equation on
the state space, namely on the space of rays of the Hilbert space. The Riemannian metric
associated with the diffusion on R2n gives a Hermitian modification of the Fubini-Study metric
on CP n−1. It is common to consider the complex projective manifold with the associated
Fubini-Study metric as the proper framework for the geometry of quantum states [23, 24],
so the modification of the metric due to the diffusion should also be formulated within this
framework.

The examples that we have analysed in this paper are restricted on a single qubit under the
influence of various types of environments. It would be interesting to analyse the properties
of the diffusion metric in the case of coupled qubits, and in particular to see what is the
curvature at the entangled states. Probably the proper framework for such analyses is the
formulation on CP n−1, mentioned in the previous paragraph, because the entangled states
then have characteristic geometric interpretation [23].
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